Pool-Level APY Dynamics
The aggregate variable rate earned by the pool is:
IR Pool = W Aave IR SOFR + ∑ n = 1 N W n IR n \text{IR}_{\text{Pool}}
= W_{\text{Aave}}\;\text{IR}_{\text{SOFR}}
+ \sum_{n=1}^{N} W_{n}\,\text{IR}_{n} IR Pool = W Aave IR SOFR + n = 1 ∑ N W n IR n where
W Aave : idle liquidity in Aave (earns IR SOFR ) W n : weight of borrower n : ( ∑ n W n = 1 − W Aave )
\begin{aligned}
W_{\text{Aave}} &: \text{ idle liquidity in Aave (earns }\text{IR}_{\text{SOFR}}\text{)} \\[2pt]
W_{n} &: \text{ weight of borrower }n \\
&: \bigl(\sum_{n} W_{n}=1-W_{\text{Aave}}\bigr)
\end{aligned} W Aave W n : idle liquidity in Aave (earns IR SOFR ) : weight of borrower n : ( n ∑ W n = 1 − W Aave ) Cash-flows are then split between the senior and junior tranches:
W USD3 IR USD3 + W sUSD3 IR sUSD3 = IR Pool , W USD3 = 0.85 , W sUSD3 = 0.15 W_{\text{USD3}}\;\text{IR}_{\text{USD3}}
+ W_{\text{sUSD3}}\;\text{IR}_{\text{sUSD3}}
= \text{IR}_{\text{Pool}},\qquad
W_{\text{USD3}} = 0.85,\;
W_{\text{sUSD3}} = 0.15 W USD3 IR USD3 + W sUSD3 IR sUSD3 = IR Pool , W USD3 = 0.85 , W sUSD3 = 0.15 USD3 and sUSD3 APY
IR USD3 = IR Pool − W sUSD3 IR sUSD3 W USD3 \text{IR}_{\text{USD3}}
= \frac{\text{IR}_{\text{Pool}}
- W_{\text{sUSD3}}\;\text{IR}_{\text{sUSD3}}}
{W_{\text{USD3}}} IR USD3 = W USD3 IR Pool − W sUSD3 IR sUSD3 USD3 receives interest first and benefits from a real-time cash reserve that enables most redemptions to clear instantly.
IR sUSD3 = IR USD3 + ( Excess Spread − Reserve Accrual ) W sUSD3 \text{IR}_{\text{sUSD3}}
= \text{IR}_{\text{USD3}}
+ \frac{\bigl(\text{Excess Spread} - \text{Reserve Accrual}\bigr)}
{W_{\text{sUSD3}}} IR sUSD3 = IR USD3 + W sUSD3 ( Excess Spread − Reserve Accrual ) sUSD3 earns every remaining basis-point of spread after senior distributions and reserve top-ups, but it also absorbs first losses.
Borrow APY
The all-in annual percentage yield a borrower pays, combining the utilization-driven base rate, the borrower’s 3CA risk spread, and any time-dependent late-penalty charges. It updates block-by-block, so borrowers always see the exact cost of capital on their outstanding balance.
IR n = IR Base ( U ) + IR DRP , n + 1 late , n IR LP \text{IR}_{n}
= \text{IR}_{\text{Base}}(U)
+ \text{IR}_{\text{DRP},n}
+ \mathbf{1}_{\text{late},n}\;\text{IR}_{\text{LP}} IR n = IR Base ( U ) + IR DRP , n + 1 late , n IR LP where IR Base ( U ) : utilisation curve IR DRP , n : default-risk premium IR LP : late-penalty rate \text{where}\;
\begin{aligned}
\text{IR}_{\text{Base}}(U) &: \text{utilisation curve} \\[2pt]
\text{IR}_{\text{DRP},n} &: \text{default-risk premium} \\[2pt]
\text{IR}_{\text{LP}} &: \text{late-penalty rate}
\end{aligned} where IR Base ( U ) IR DRP , n IR LP : utilisation curve : default-risk premium : late-penalty rate Base Interest-Rate
A variable rate indexed to pool utilization. This mechanism balances liquidity: cheap when the pool is under-used, expensive when liquidity is scarce.
IR Base ( U ) = { r SOFR + Δ min , U ≤ U t , r SOFR + Δ min + C ( U − U t ) , U > U t . \text{IR}_{\text{Base}}(U)=
\begin{cases}
r_{\text{SOFR}} + \Delta_{\min}, & U \le U_{t},\\[6pt]
r_{\text{SOFR}} + \Delta_{\min} + C\,(U-U_{t}), & U > U_{t}.
\end{cases} IR Base ( U ) = ⎩ ⎨ ⎧ r SOFR + Δ m i n , r SOFR + Δ m i n + C ( U − U t ) , U ≤ U t , U > U t . where r SOFR : live SOFR proxy Δ min : minimum spread U : current utilisation U t : target utilisation C : slope beyond U t \text{where}\;
\begin{aligned}
r_{\text{SOFR}} &: \text{live SOFR proxy} \\[2pt]
\Delta_{\min} &: \text{minimum spread} \\[2pt]
U &: \text{current utilisation} \\[2pt]
U_{t} &: \text{target utilisation} \\[2pt]
C &: \text{slope beyond }U_{t}
\end{aligned} where r SOFR Δ m i n U U t C : live SOFR proxy : minimum spread : current utilisation : target utilisation : slope beyond U t Default-Credit-Risk Premium (3CA Spread)
A borrower-specific add-on derived from 3CA’s probability-of-default model. It compensates the pool for expected credit losses alongside a yield spread premium.
IR DRP , n = LGD × PD n ( 1 + Buffer ) \text{IR}_{\text{DRP},n}
= \text{LGD}\,\times\text{PD}_{n}\,(1+\text{Buffer}) IR DRP , n = LGD × PD n ( 1 + Buffer ) where PD n : prob. of default (3CA) LGD : loss-given-default Buffer : model margin \text{where}\;
\begin{aligned}
\text{PD}_{n} &: \text{prob. of default (3CA)} \\[2pt]
\text{LGD} &: \text{loss-given-default} \\[2pt]
\text{Buffer} &: \text{model margin}
\end{aligned} where PD n LGD Buffer : prob. of default (3CA) : loss-given-default : model margin Late-Penalty Component
An additional APR activated after the grace period expires. Accruing on outstanding principal until the account is current or declared in default, it discourages strategic non-payment and funds the reserve to offset higher servicing costs associated with delinquent loans.
1 late , n IR LP \mathbf{1}_{\text{late},n}\,\text{IR}_{\text{LP}}
1 late , n IR LP where IR LP : rate applied after grace period \text{where}\;
\text{IR}_{\text{LP}}:\ \text{rate applied after grace period} where IR LP : rate applied after grace period